Power and Conflict Resolution in Sibling, Parent–Child, and Spousal Negotiations

Holly E. Recchia
University of Utah

Marcia Vickar
University of Toronto

This study used a within-family observational design to examine conflict strategies (planning, opposition) and resolutions (standoff, win-loss, compromise) across family subsystems, with an emphasis on power differences between parents and children during relatively symmetrical within-generation (spousal, sibling) and relatively asymmetrical between-generation (parent–child) dyadic interactions. Up to six dyads in 67 families (children’s ages ranging from 3 to 12 years) discussed an unresolved conflict. Results revealed that within-generation discussions ended more in standoff, whereas between-generation discussions ended with more win-loss resolutions. Multilevel analyses indicated that parents engaged in more planning and opposition than children; however, they opposed more and planned less with their spouses than their children. In general, more planning and less opposition were associated with achieving resolutions rather than failing to resolve differences. Some effects were qualified by within-family differences between mothers versus fathers and older versus younger siblings, as well as between-family differences in younger siblings’ age. Implications for theories of power and family relationship dynamics are discussed.

Keywords: conflict, negotiation, spouses, siblings, parent–child relations

Across the lifespan, relationships with siblings, spouses, parents, and children are among our most enduring interpersonal connections. Furthermore, spousal, sibling, and parent–child subsystems in the family are reciprocally interdependent (Minuchin, 1985), and many studies of family conflict have focused on these connections among family subsystems (e.g., Rinaldi & Howe, 2003) or the impact of family conflict on children’s adjustment (e.g., Goekke-
negotiations. However, for our purposes, separately exam-
confound variables related to processes and outcomes of
they attempt to resolve issues, and especially the strategies
between these two plausible resolutions in relatively equal
positions so that each person partly achieves his/her goals,
contrast, if both arguers are willing to revise their initial
control attempts to prevail in conflict (Dunbar, 2004). In
dyadic power theory suggests that it may not even be
powerful opponents tend to achieve their goals. Indeed,
& Raven, 1959; Perlman, Siddiqui, Ram, & Ross, 2000): their
greater physical strength and control of family re-
sources are obvious sources of parents’ power, but their
recognized expertise and sophisticated reasoning abilities
also contribute to parents’ dominance in parent–child rel-
relationships. In comparison to parent–child dyads, various
sources of power may be relatively more equivalent be-
between siblings and spouses, but importantly, neither of these
relationships is entirely symmetrical. Age differences be-
between siblings provide earlier-born children with greater
ability to control sibling interaction (Perlman et al., 2000),
and spousal interactions reveal asymmetrical roles between
partners (e.g., Dunbar & Burgoon, 2005). Yet, in compari-
son to parent–child dyads, various sources of power are
relatively more equivalent between siblings and spouses. As
such, our study set out to capture both sources of variability
(i.e., within-dyad and between-dyad differences in the fam-
ily) by observing multiple family members (mothers, fa-
thers, older and younger siblings) across multiple contexts
(i.e., spousal, sibling, and parent–child interactions).

Sources of Power in Family Conflict

One central dimension that differentiates between- and
within-generation family relationships is the relative power
dyadic partners. In parent–child interactions, parents
have more power than do their children (Emery, 1992).
Parental power is derived from a variety of sources (French
& Raven, 1959; Perlman, Siddiqui, Ram, & Ross, 2000): their
greater physical strength and control of family re-
sources are obvious sources of parents’ power, but their
recognized expertise and sophisticated reasoning abilities
also contribute to parents’ dominance in parent–child rel-
relationships. In comparison to parent–child dyads, various
sources of power may be relatively more equivalent be-
between siblings and spouses, but importantly, neither of these
relationships is entirely symmetrical. Age differences be-
between siblings provide earlier-born children with greater
ability to control sibling interaction (Perlman et al., 2000),
and spousal interactions reveal asymmetrical roles between
partners (e.g., Dunbar & Burgoon, 2005). Yet, in compari-
son to parent–child dyads, various sources of power are
relatively more equivalent between siblings and spouses. As
such, our study set out to capture both sources of variability
(i.e., within-dyad and between-dyad differences in the fam-
ily) by observing multiple family members (mothers, fa-
thers, older and younger siblings) across multiple contexts
(i.e., spousal, sibling, and parent–child interactions).

Resolutions and Strategies in Family Conflicts

Conflict theorists have noted that conflict resolutions
reflect the contrast in relative power that differentiates sym-
metrical from asymmetrical relationships (Perlman et al.,
2000). In relationships where power is asymmetrical, more
powerful opponents tend to achieve their goals. Indeed,
dyadic power theory suggests that it may not even be
necessary for powerful opponents to engage in explicit
control attempts to prevail in conflict (Dunbar, 2004). In
contrast, when power is more equal between partners, re-
ciprocal control attempts are more likely, and conflict res-
olutions are less predictable. If both arguers are unable to
coerce or persuade the other and neither is willing to give up
ground, negotiators will fail to resolve their differences. In
contrast, if both arguers are willing to revise their initial
positions so that each person partly achieves his/her goals,
compromise resolutions can be reached. The distinction
between these two plausible resolutions in relatively equal
power dyads may depend on family members’ orientation as
they attempt to resolve issues, and especially the strategies
that they use to do so.

Methods used in many studies of family conflict fail to
separately assess both conflict strategies and resolutions, or
confound variables related to processes and outcomes of
negotiations. However, for our purposes, separately exam-
going each individual’s conflict strategies as well as the
dyadic resolution is critical, because it provides a window
into how family members exercise and experience power as
they resolve interpersonal problems in different relation-
ships. For instance, although children may engage in
problem-solving with their parents, it may be parents’ con-
structive strategies that are particularly associated with mu-
truly agreeable solutions in this context.

In general, certain types of conflict strategies are more or
less conducive to achieving constructive conflict resolutions
such as compromise. Deutsch (1973) differentiated between
constructive and destructive conflict strategies, a distinction
that has been echoed in the spousal (Gottman, 1994; Stan-
ley, Markman, & Whitting, 2002), sibling (Perlman & Ross,
2005; Ram & Ross, 2001), and parent–child conflict liter-
atures (Rinaldi & Howie, 2003; Rueter & Conger, 1995). In
these studies, one key set of constructive strategies, often
labeled “problem-solving,” is defined by future-oriented
planning (Cummings et al., 2008) aimed at seeking ways to
integrate the goals of both parties via compromise (Stein &
Albro, 2001). In turn, oppositional tactics focus on making
the other yield to one’s own position through disagree-
ments, accusations, or persuasive contentious arguments,
and tend to interfere with the achievement of mutually
agreeable resolutions (Forgatch, 1989; Stanley et al., 2002).
Across family relationships, oppositional strategies predict
family members’ failures to resolve their differences,
whereas future-oriented planning has been linked to con-
structive conflict resolutions such as compromise (Forgatch,
1989; Ram & Ross, 2001; Vuchinich, 1999). These two sets
of strategies (i.e., planning and opposition) are particularly
relevant for our purposes, because each reflects a distinct
source of power that individuals may use to achieve their
conflict goals (French & Raven, 1959). Specifically, less
constructive forms of coercive power may be exercised
though oppositional strategies whereas expertise is mani-
ifested when more sophisticated family members control the
planning process that resolves differences.

Although conflict processes among siblings, spouses, and
parent–child dyads have each been well researched, the
relative frequencies of specific conflict strategies between
subsystems are rarely compared directly. Only a few studies
have compared children’s conflict strategies using the same
observational methodologies across family relationships,
generally finding more negative emotionality and unreas-
ioned opposition between young siblings than within
mother–child dyads (Dunn & Munn, 1987; Dunn et al.,
1995). Although theory on adults’ family conflict strategies
suggests a similar pattern of greater opposition between
spouses than with children (Vuchinich, 1984), this compar-
ison has not been systematically addressed in the literature.
In contrast, the relative frequencies of different conflict
resolutions across family relationships have been more
clearly delineated. Most studies reveal that when family
members do not compromise, in spousal or sibling relation-
ships, disputants typically fail to entirely resolve their dif-
ferences (Goeke-Morey et al., 2007; Siddiqui & Ross, 1999;
Vuchinich, 1987). In contrast to sibling or spousal interac-
tions, parent–child relationships are characterized by sub-
stantial differences in power. Thus, not surprisingly, when parents and children engage in conflict, parents typically prevail (Stein & Albro, 2001; Vuchinich, 1987). Parent–child discussions may be oriented differently than sibling or spousal discussions; these interactions are primarily aimed at producing a concession by the child or maintaining the family power structure (Emery, 1992; Vuchinich, 1984), rather than finding a way to satisfy both parties’ interests.

The Current Study

In this study we systematically explored variability in family conflict resolution using a within-family design. We used discussion tasks that have been developed to assess conflict strategies in various family subsystems (Gottman, 1994; Rueter & Conger, 1995; Smith & Ross, 2007). In 67 families with two children, we asked all available dyadic combinations of family members to discuss an unresolved conflict. That is, parents were observed resolving conflicts with their spouses and each of their two children, and children were observed with their siblings and each parent. For each dyad, we coded the resolution achieved (i.e., compromise, win-loss, or standoff) as well as the use of future-oriented planning (i.e., developing solutions) and oppositional strategies (i.e., accusing, challenging, counterarguing) by each partner in particular family subsystems. In our view, power can be considered both in terms of resolutions (i.e., achieving one’s own personal goals during conflict resolution) and process (the extent to which each individual’s strategies influence conflict resolutions). Thus, the resolutions achieved, the strategies that family members use to influence one another, and the relative effectiveness of each individual’s strategies in influencing conflict resolutions across family relationships frame our analysis of family conflict negotiations.

Hypotheses

We expected conflict resolutions to differ across family relationship contexts (H1a). Specifically, we expected that the relative asymmetry of parent–child relationships would be linked to more win-loss resolutions in this dyad (Stein & Albro, 2001; Vuchinich, 1987), whereas sibling and spousal conflicts would be more often left unresolved (Siddiqui & Ross, 1999; Vuchinich, 1987). Furthermore, when win-loss resolutions did occur, we expected parents to overwhelmingly emerge as the winners during interactions with their children, whereas the distributions of wins and losses would be relatively equitable between siblings and spouses (H1b), although older siblings may achieve their conflict goals more often than younger ones (Perlman et al., 2000).

Following from dyadic power theory (Dunbar, 2004), we expected family members to engage in more oppositional behavior during spousal and sibling discussions than during parent–child interactions (H2). Although parents do use power assertive techniques with their children and in turn, children oppose their parents (Hastings & Grusec, 1998; Kuczynski, Kochanska, Radke-Yarrow, & Girmus-Brown, 1987), oppositional strategies may be more frequent during interactions in relatively symmetrical family relationships. In contrast, we expected parents to engage in more future-oriented planning during parent–child interactions than during discussions with their spouses, given their role as socialization agents for their children (H3).

Finally, across all family relationships, we expected more planning and less opposition to be associated with compromise resolutions that considered both negotiators’ goals (Forgatch, 1989; Ram & Ross, 2001; Stanley et al., 2002; Vuchinich, 1999; H4). However, we expected these associations to vary as a function of relative power in different family subsystems. Consistent with parents’ leadership roles and relative expertise in conflict management, we expected that the strategies adopted by parents would be more strongly related to resolutions than those of their children (H5a). Similarly, we expected that older siblings’ conflict strategies would be more strongly related to conflict resolutions than those of younger siblings (H5b).

Although our emphasis was on within-family differences, some studies suggest that family conflict processes may vary as a function of child age (e.g., Ram & Ross, 2001), although others do not (e.g., Goeke-Morey et al., 2007). As relevant, age effects were tested as potential between-family moderators of the predicted associations.

Method

Participants

Data for this investigation were drawn from a more extensive intervention study of family relationships. The entire procedure consisted of 14 sessions in families’ homes that included interviews, observations, and, in some randomly assigned cases, conflict training. The data for these analyses came from the pre-test sessions of the intervention study (i.e., prior to assigning families randomly to groups). Participants were recruited through 20 middle-class, ethnically diverse elementary schools in metropolitan Chicago. Letters sent home invited families with two children between 4- and 12-years of age who were not experiencing serious developmental delays or physical or mental health problems to participate. Eighty-five families who responded to invitations met these criteria; however, 18 families decided to discontinue their participation after one or two sessions when the full extent of the time commitment became clear to them.

The 67 families with available observational data for conflict discussions included six single-parent households (all mothers) and 61 two-parent households. The sample included 55 Caucasian, 6 African American, and 3 Latino families, as well as 3 families of mixed ethnicity. All families spoke English at home. Children’s ages ranged from 3.55 to 12.39 years (younger sibling $M = 5.76$ years, $SD = .96$, range = 3.55 to 7.93; older sibling $M = 8.82$, $SD = 1.22$, range = 5.38 to 12.39). The average age difference between siblings was 3.07 years ($SD = 1.17$, range = 1.00 to 5.39). The sample included 31 same-gender pairs (9 female, 22 male) and 36 mixed-gender pairs (22 older female and 14 older male). Mothers’ M age was 37.96
years (SD = 4.57, range = 26 to 48 years), and fathers’ M age was 39.57 years (SD = 5.19, range = 30 to 56 years). Parental education ranged from high school (5 mothers, 4 fathers) to advanced degrees (21 mothers, 23 fathers), with most parents having received some college education (14 mothers, 14 fathers) or completing a college degree (27 mothers, 20 fathers). Family incomes ranged from under $15,000 to over $75,000 per year. None of these characteristics significantly differentiated the subsample of 67 participating families from the initial sample of 85 families. Each family received a $330 honorarium for their participation.

Measures and Coding

Verbatim transcripts of all verbal conflict strategies along with records of nonverbal actions relevant to the interaction (e.g., nodding, shaking hands, pointing, threatening gestures, intonation or gestures that changed the meaning of the utterance) were prepared from video records. To permit the calculation of kappas for interrater reliability, coding was done from transcripts which were parsed into the smallest meaningful units of verbal and nonverbal behavior (i.e., subject-verb clauses, or single actions). Transcripts were coded for planning and oppositional strategies. Frequencies of each strategy were computed for each family member in each dyad. Generally, the unit of analysis for coding was a clause, although if consecutive clauses received the same code, the behavior was scored only once. Nine trained undergraduate coders coded the data, and all coders participated in establishing interobserver reliability, based on a sample of discussions including equal numbers of all dyad types. Reliability was established on 34% of the data. Weighted mean Cohen’s kappa for parsing of codable units was .85 and kappa for the type of conflict strategy was .84. Kappas for all pairs of coders exceeded .70.

Planning was coded when family members generated, assessed or adopted plans for resolving similar issues in the future (Cummings et al., 2008; Ram & Ross, 2001). This included proposing plans (e.g., “We should take turns.”), modifying plans (e.g., “Except we should each get double turns.”), asking about plans (e.g., “Who would go first?”), justifying plans (e.g., “That would make it fair.”), and requesting assent to plans (e.g., “So you agree with that?”). Opposition was coded when family members advanced their own positions or versions of past events while countering or dismissing the arguments of the other (Forgatch, 1989; Stanley et al., 2002). Oppositional strategies included accusations (e.g., “You barged right into my room.”), disagreements (e.g., “No, I don’t think so.”), counterarguments (e.g., “That plan is too complicated.”), challenges (e.g., “Are you trying to say that’s a good plan?”), and dismissals (e.g., “I don’t actually care what you think.”).

Each discussion was coded globally for the resolution reached by the dyad in light of their conflict goals. To increase the validity of associations between strategies and resolutions, resolutions were scored by a different team of coders. If family members successfully resolved their conflict, dyadic resolutions were scored as compromise (i.e., both participants achieving at least some of what they wanted) or win-loss (i.e., only one participant’s goal being realized) resolutions. In the latter case, the winner was noted. If family members failed to resolve their differences, the resolution was coded as a standoff. Cohen’s kappa, established among four coders on 21% of the data, was .71.

Results

How Do Conflict Resolutions Vary Across Different Dyads in the Family?

To begin, we conducted nonparametric tests to examine patterns of dyadic conflict resolutions across family dyads (H1; Table 1). As expected, resolutions varied across dyads, $\chi^2(10, N = 376) = 61.22, p < .001$, Cramer’s $\Phi = .29$. Family subsystems differed largely in terms of whether discussions ended in standoff or win-loss resolutions (H1a). Stand-offs occurred in 35% of both the sibling and spousal discussions, but in fewer than 8% of the 254 discussions between parents and children. In contrast, parents and children ended their discussions with win-loss outcomes fully 50% of the time, whereas within-generation discussions
ended with wins and losses only 23% of the time for siblings and 18% of the time for spouses. In contrast, the rates of compromise were more consistent across dyad types; Siblings and spouses compromised 42% and 47% of the time respectively, and parents and children compromised on average in 43% of their discussions. As expected (H1b), win-loss resolutions in each parent–child dyad overwhelmingly favored the parent (all ps < .001; only 4/126 these win-loss resolutions favored the child). In contrast, the binomial tests for siblings (10/14 win-loss resolutions favored older siblings) and spouses (6/11 resolutions favored the mother) were not significant, although the low frequency of such resolutions may account for the lack of significance for siblings.

How Do Conflict Strategies Vary Across Different Individuals and Dyads in the Family, and How Are They Associated With Conflict Resolutions?

We used multilevel models to examine individual, dyadic and family effects on opposition and planning (H2, H3), as well as links between these conflict strategies and dyadic resolutions (H4, H5). Primary analyses were performed in HLM, a multilevel modeling program that allows the simultaneous analysis of relationships between multiple, independent actors such as are found within families (Bryk & Raudenbush, 1992). Individuals’ frequencies of conflict strategies were nested within dyad at L2 and family at L3. Initial models containing only the dependent variable were used to describe how the variability in strategies was distributed across different levels of analysis (i.e., individual-, dyad-, and family-level effects). In subsequent steps, model comparison tests (i.e., χ^2 tests of reduction in deviance) were used to determine whether the inclusion of each significant fixed and random effect improved the model. Any effects that did not improve the model at entry were removed in subsequent steps. To examine whether opposition and planning strategies varied across dyad types (i.e., within- and between-generation discussions) and whether there were associations between conflict strategies and resolutions within family dyads, we computed two sets of nested multi-level models (one set for each conflict strategy). In each case, we first tested differences between parents and children within dyadic interactions (L1), and whether family members’ conflict strategies varied across dyad types (L2). Then, we tested links between individuals’ conflict strategies and dyadic conflict resolutions (L2). Finally, we examined whether these effects differed for mothers and fathers, and similarly, whether they differed for older and younger siblings. Although our primary emphasis was on within-family effects, between-family variables (specifically, each child’s age as well as the interaction between children’s ages) were tested at L3 as moderators of lower-level effects for relevant coefficients with significant L3 random variance components. To control for the length of discussions, the main effect of each individual’s verbal on-topic clauses (subtracting the number of clauses that captured the strategy of interest, to avoid controlling for the variable being analyzed) was entered at L1. For example, in the prediction of opposition, nonoppositional clauses were included as an L1 control variable.

There were up to 12 data points per family (i.e., 6 dyads × 2 actors per dyad) or a potential total of 804 data points for each conflict strategy across all families, although only 751 scores were available because of missing data occasioned largely by the inclusion of single-parent families in our sample. For clarity, alphabetic superscripts are included throughout the subsequent sections to identify the specific model effects in Tables 2 and 3 that are being reported in the text. Predicted Ms reported in the text are computed based on model coefficients, with other variables held constant either at the mean or at 0, as appropriate. For significant effects, we report a simple measure of effect size (ES), computed as model coefficient/SD of the outcome (Cooper & Hedges, 1994).

Explaining variability in family members’ use of opposition.

The unconditional model revealed that 26% of the total variability in opposition was between actors within dyads (L1; σ^2), 61% was between dyads within families (L2; τ_a), and 13% was between families (L3; τ_b). Multilevel models for opposition are presented in Table 2. Model A tested whether children (0) and parents (1) differed in their conflict strategies in within- (0) and between-generation (1) discussions. Overall, the effect for parentsa (ES = .41) revealed that they ($M = 10.28$) were more oppositional than children ($M = 7.71$; superscripts correspond with tables). Partially confirming H2, whereas children’s use of opposition did not vary across contexts (i.e., ns effect of between-generation discussion [BWGEN] on the interceptb), the

Table 1

<table>
<thead>
<tr>
<th>Dyad</th>
<th>Compromise</th>
<th>Win-loss</th>
<th>Standoff</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siblings</td>
<td>26</td>
<td>14</td>
<td>22</td>
<td>62</td>
</tr>
<tr>
<td>Spouses</td>
<td>28</td>
<td>11</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>Mother–Older sibling</td>
<td>34</td>
<td>27</td>
<td>6</td>
<td>67</td>
</tr>
<tr>
<td>Mother–Younger sibling</td>
<td>31</td>
<td>34</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>Father–Older sibling</td>
<td>24</td>
<td>32</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>Father–Younger sibling</td>
<td>19</td>
<td>33</td>
<td>7</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>151</td>
<td>63</td>
<td>376</td>
</tr>
</tbody>
</table>

Table 2
Multilevel Models Explaining Variability in Family Members’ Oppositional Conflict Strategies

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>Model A</th>
<th>Fixed effect</th>
<th>Model B</th>
<th>Fixed effect</th>
<th>Model B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.51 (.77)***</td>
<td>Intercept</td>
<td>7.54 (.71)***</td>
<td>Intercept</td>
<td>6.93 (1.70)***</td>
</tr>
<tr>
<td>BWGEN (L2)b</td>
<td>.40 (.62)</td>
<td>BWGEN (L2)</td>
<td>.82 (.64)</td>
<td>BWGEN (L2)</td>
<td>.85 (.62)</td>
</tr>
<tr>
<td>× YS age (L3)</td>
<td>.84 (.39)*</td>
<td>× YS age (L3)</td>
<td>.80 (.36)*</td>
<td>× YS age (L3)</td>
<td>.74 (.36)*</td>
</tr>
<tr>
<td>WC (L2)c</td>
<td></td>
<td>WC (L2)</td>
<td>-.19 (.55)*</td>
<td>WC (L2)</td>
<td>-.23 (.65)***</td>
</tr>
<tr>
<td>SW (L2)d</td>
<td></td>
<td>SW (L2)</td>
<td>-.14 (1.05)</td>
<td>SW (L2)</td>
<td>-.13 (1.03)</td>
</tr>
<tr>
<td>Parent (L1)e</td>
<td>4.27 (1.33)**</td>
<td>Parent (L1)</td>
<td>3.75 (1.25)**</td>
<td>Parent (L1)</td>
<td>4.44 (1.23)***</td>
</tr>
<tr>
<td>× BWGEN (L2)</td>
<td>-.34 (1.39)*</td>
<td>× BWGEN (L2)</td>
<td>-.20 (1.29)</td>
<td>× BWGEN (L2)</td>
<td>-.24 (1.29)</td>
</tr>
<tr>
<td>YS age (L3)</td>
<td>.84 (.39)*</td>
<td>YS age (L3)</td>
<td>.80 (.36)*</td>
<td>YS age (L3)</td>
<td>.74 (.36)*</td>
</tr>
<tr>
<td>Causal (L1)</td>
<td>.09 (.01)***</td>
<td>Causal (L1)</td>
<td>.09 (.01)***</td>
<td>Causal (L1)</td>
<td>.09 (.01)***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random effect</th>
<th>Variance component</th>
<th>Random effect</th>
<th>Variance component</th>
<th>Random effect</th>
<th>Variance component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (L2)</td>
<td>14.97***</td>
<td>Intercept (L2)</td>
<td>10.41***</td>
<td>Intercept (L2)</td>
<td>11.38***</td>
</tr>
<tr>
<td>Intercept (L3)</td>
<td>37.25**</td>
<td>Intercept (L3)</td>
<td>26.73***</td>
<td>Intercept (L3)</td>
<td>26.46***</td>
</tr>
<tr>
<td>BWGEN (L3)</td>
<td>17.64**</td>
<td>BWGEN (L3)</td>
<td>6.78*</td>
<td>BWGEN (L3)</td>
<td>5.94*</td>
</tr>
<tr>
<td>SW (L3)</td>
<td>8.31</td>
<td>SW (L3)</td>
<td>7.62</td>
<td>SW (L3)</td>
<td>6.95</td>
</tr>
<tr>
<td>Parent × SW (L3)</td>
<td>44.97</td>
<td>Parent × SW (L3)</td>
<td>46.82*</td>
<td>Parent × SW (L3)</td>
<td>46.82*</td>
</tr>
<tr>
<td>Causal (L3)</td>
<td>.004***</td>
<td>Causal (L3)</td>
<td>.005***</td>
<td>Causal (L3)</td>
<td>.005***</td>
</tr>
</tbody>
</table>

Note. BWGEN = between-generation discussion; YS = younger sibling; WC = win-loss/standoff (−) vs. Compromise (+); SW = standoff (−) vs. win-loss (+). Predictor variables are indented when they denote higher-level moderators of lower-level effects. Alphabetical superscripts link effects to the pattern of associations described in the text. Causal and L3 variables were entered as grand mean centered predictors. HLM equations are available upon request from the first author.

Our next two models tested whether distinguishing between older vs. younger siblings (Model B1) and mothers vs. fathers (Model B2; not included in Table 2) added to the prediction of opposition. Distinguishing between older (0) and younger siblings (1) improved Model B. The effect for younger siblings (ES = .11) revealed that they (M = 8.29) engaged in more opposition than older siblings (M = 6.95). Further, as expected (H5b), unlike the pattern for older siblings, the YS × WC interaction (ES = .19) revealed that younger siblings’ opposition did not distinguish compromises from other conflict resolutions. In contrast, distinguishing between mothers and fathers did not influence the model, or moderate any of the effects in Model B. Thus, mothers’ and fathers’ use of opposition across dyad types appeared to be similar, as did their associations between conflict resolutions and opposition.

Explaining variability in family members’ use of planning. The unconditional model revealed that the vast majority (99%) of the total variability in planning was between individuals within dyads (L1). Nevertheless, various L2 and L3 predictors significantly improved the model for planning. Results are presented in Table 3. Our first analysis (Model A) tested overall differences between parents’ and children’s planning in within- and between-generation discussions. In general, the effect for parenthood (ES = .49) suggested that they (M = 11.82) engaged in more planning than children (M = 4.82). However, supporting H3, the Parent × BWGEN interaction (ES = .66) revealed that whereas children planned equally with their parents and...
Table 3

Multilevel Models Explaining Variability in Family Members’ Future-Oriented Planning

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model B1</th>
<th>Model B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effect</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>4.76 (.65)**</td>
<td>5.00 (.57)**</td>
<td>5.89 (.63)**</td>
<td>9.41 (1.18)**</td>
</tr>
<tr>
<td>BWGEN (L2)</td>
<td>.11 (.53)</td>
<td>BWGEN (L2)</td>
<td>-1.02 (.56)†</td>
<td>BWGEN (L2)</td>
</tr>
<tr>
<td>Parent (L1)</td>
<td>4.19 (1.17)**</td>
<td>Parent (L1)</td>
<td>3.37 (1.05)**</td>
<td>BWGEN (L2)</td>
</tr>
<tr>
<td>× BWGEN (L2)k</td>
<td>5.63 (1.21)**</td>
<td>× BWGEN (L2)</td>
<td>6.17 (1.12)*****</td>
<td>Parent (L1)</td>
</tr>
<tr>
<td>× YS age (L3)l</td>
<td>-1.65 (.49)****</td>
<td>× YS age (L3)</td>
<td>-1.82 (.49)****</td>
<td>Parent (L1)</td>
</tr>
<tr>
<td>Clauses (L1)</td>
<td>.06 (.01)*****</td>
<td>Clauses (L1)</td>
<td>.07 (.01)*****</td>
<td>Clauses (L1)</td>
</tr>
<tr>
<td>Random effect</td>
<td>Variance component</td>
<td>Variance component</td>
<td>Variance component</td>
<td>Variance component</td>
</tr>
<tr>
<td>Intercept</td>
<td>5.77</td>
<td>Intercept (L2)</td>
<td>3.69</td>
<td>Intercept (L2)</td>
</tr>
<tr>
<td>Intercept (L3)</td>
<td>2.17**</td>
<td>Intercept (L3)</td>
<td>1.14**</td>
<td>Intercept (L3)</td>
</tr>
<tr>
<td>Parent × BWGEN (L3)</td>
<td>4.54†</td>
<td>Parent × BWGEN</td>
<td>5.27</td>
<td>Parent × BWGEN</td>
</tr>
<tr>
<td>(L3)</td>
<td></td>
<td>(L3)</td>
<td></td>
<td>(L3)</td>
</tr>
<tr>
<td>Clauses (L3)</td>
<td>.002***</td>
<td>Clauses (L3)</td>
<td>.001***</td>
<td>Clauses (L3)</td>
</tr>
</tbody>
</table>

Note. BWGEN = between-generation discussion; YS = younger sibling; WC = win-loss/standoff (−) vs. compromise (+); SW = standoff (−) vs. win-loss (+). Predictor variables are indented when they denote higher-level moderators of lower-level effects. Alphabetic superscripts link effects to the pattern of associations described in the text. Clauses and L3 variables were entered as grand mean centered predictors.

† p < .10. ‡ p < .05. ** p < .01. *** p < .001.
siblings, parents planned more with their children ($M = 14.69$) than their spouses ($M = 8.95$). The model also revealed that the younger sibling’s age moderated the Parent \times BWGEN interaction ($ES = -0.19$); in families with chronologically older laterborns, parents engaged in less planning during interactions with their children.

Next, we added contrasts between dyadic conflict resolutions (Model B). Partially supporting H4, the two resolution contrast codes predicting the intercept in Model B (i.e., WCm and SWm; $ES = 0.39$ and 0.43, respectively) revealed that compromise ($M = 9.97$) was associated with slightly more planning than win-loss resolutions ($M = 8.44$). However, relative to the other two resolutions, standoffs were especially associated with a lack of planning ($M = 4.78$). These effects did not differ for parents and children, thus disconfirming H5a.

Finally, we tested whether distinguishing between older vs. younger siblings (Model B1) and mothers vs. fathers (Model B2) would add to the prediction of planning. In both cases, these contrasts improved the models. The effect for younger siblingsa in Model B1 ($ES = -0.22$) revealed that they ($M = 4.31$) planned less than older siblings ($M = 6.16$). However, the lack of significant interaction effects suggested that older and younger siblings did not differ in terms of (a) planning during within- vs. between-generation discussions or (b) associations between planning and conflict resolutions (disconfirming H5b). In contrast, the pattern was substantially more complex for differences between mothers and fathers (Model B2). Testing differences between mothers’ and fathers’ planning required reversing the reference group in the analysis, thus inverting the model coefficients involving the distinctions between parents and children. Although fathers did not differ in their overall levels of planning from mothers (i.e., main effect of Dadp ns), differences between mothers and fathers qualified a number of the above associations. Overall, fathers showed the same pattern in which they engaged in more planning with their children than with their spouses (Dad \times BWGENp, ns), but for fathers, planning was positively associated with compromise only during discussions with their children (Dad \times WC \times BWGENp; $ES = .78$; father–child $Ms = 17.07$, 13.09, and 9.00, for compromise, win-loss, and standoff, respectively). In contrast to mothers, during spousal discussions, fathers’ planning was selectively associated with win-loss resolutions favoring either spouse, rather than compromise resolutions (planning Ms for mothers in spousal discussions ending in compromise, win-loss, and standoff = 11.72, 10.32, and 6.22, respectively; comparable planning Ms for fathers in spousal discussions = 7.76, 10.46, and 6.37, respectively).

Discussion

In this study, we used an innovative observational research design that included 376 negotiations capturing the conflict strategies of each dyadic combination of family members. The dramatic differences in resolutions and the distribution of variation in future-oriented planning and opposition revealed in the unconditional models suggested that our emphasis on within-family differences in conflict processes was apt. In each case, the majority of the observed variability was associated with differences between actors within dyads and/or differences between dyads within the family, rather than between families.

This strategy revealed various novel findings that contribute to our understanding of how the relative power of family members influences conflict dynamics. Our results reveal substantial and largely unexplored differences in conflict strategies across actors and contexts within the family. First, we found differences between parents’ and children’s conflict strategies as well as between parents’ behavior in spousal and parent–child discussions. Second, the conflict resolutions of within- and between-generation dyads differed in predictable ways. Third, in line with our hypotheses, conflict strategies and resolutions were associated, although the nature of these links differed among actors in the family.

Differences in Conflict Strategies and Resolutions Between Parents and Children Within- and Between-Generations

As expected, we found that conflict resolutions varied across dyad types. Whereas parent–child discussions were likely to end in win-loss resolutions that overwhelmingly favored parents (Stein & Albro, 2001; Vuchinich, 1987), more spousal and sibling conflicts were left unresolved (Siddiqui & Ross, 1999; Vuchinich, 1987). This difference is in line with theory suggesting that conflicts may be more difficult to resolve in symmetrical relationships, as “power struggles” are more likely to ensue (Dunbar, 2004; Perlman et al., 2000). Thus, even in light of our request that family members attempt to resolve their differences in a mutually satisfying way (a goal that may not always be salient in naturalistic family conflict), the proportional frequencies of win-loss resolutions and standoff reflected clear differences between family subsystems.

Parents and children also differed in terms of their conflict strategies. With the length of discussions accounted for, we found that parents engaged in more future-oriented planning as well as more opposition than their children. However, more interestingly, these differences between parents and children varied considerably as a function of relationship context. As expected, with their spouses, adults engaged in more opposition and less planning than with their children. This pattern suggests that during parent–child discussions, parents typically modeled constructive patterns of strategies for their children. Our request that parents solve conflicts with their children during a reflective discussion most likely brought adults’ child-centered parenting goals to the fore (Hastings & Grusec, 1998). Furthermore, various sources of power favor parents during interactions with children (French & Raven, 1959; Perlman et al., 2000). As such, parents largely controlled the process and planned the resolution of parent–child issues. In contrast, with their spouses, adults were more likely to engage as equals; disagreement and heated debate may be relatively normative behaviors during marital interactions (Gottman,
The observed between-family effects of the younger sibling’s age were also consistent with an interpretation of findings in terms of relative power: in families with older and increasingly sophisticated children (Ram & Ross, 2001), parents’ less constructive strategies during interactions with their children reflected these differences in relative symmetry (Dunbar, 2004).

Yet contrary to expectations, we did not find that children’s planning or opposition differed between discussions with their siblings and their parents. Previous research suggests that children are less upset and more constructive during conflicts with parents than with siblings (Dunn & Munn, 1987; Dunn et al., 1995). However, rather than naturalistic observations of preschoolers, our study assessed conflict strategies during family discussions of previously unresolved issues, and also included somewhat older children. This divergence from previous research may reflect changes in parent–child relationships across development, differences between brief naturalistic squabbles and discussions of especially memorable issues, as well as dissimilarities between our measured variables (i.e., verbal planning and oppositional strategies) and those assessed in other studies (e.g., emotionality).

The within-family patterns of results for parents and children have implications for family conflict theory, in that they suggest that parents’ relative power in the family may be exercised more via future-oriented planning than opposition during interactions with their children. This reflects the use of expert and informational power, rather than coercion (French & Raven, 1959), to produce solutions that are in one’s own interests. It seems that parents are largely charting the course of resolution during parent–child discussions and are not as effective in eliciting plans from their children, although children do participate in the planning process to a limited degree. Interestingly, the observed birth order effects for siblings are also in line with this argument, in that older siblings engaged in more planning (but less opposition) than younger siblings. That is, older siblings appear to be exercising more power in family conflict discussions than their younger counterparts, consistent with findings on asymmetry in siblings’ conflict roles (Perlman et al., 2000).

Associations Between Conflict Strategies and Resolutions

Conflict resolutions varied considerably within, in addition to between dyad types, and this variability was associated with the conflict strategies employed by family members in the discussion task. As expected, less opposition by older siblings (but not younger siblings) was associated with compromise resolutions that considered both family members’ goals. It may be that younger siblings’ strategies were least diagnostic because of their less sophisticated conflict skills (Ram & Ross, 2001), and thus they were less able to influence the direction that conflict discussions would take. In turn, parents’ opposition was linked to more standoffs (i.e., fewer win-loss and compromise resolutions). In other words, both compromises and wins by parents were associated with less opposition in comparison with standoffs. This pattern provides the novel insight that less opposition by parents promotes resolution, whereas less opposition by older siblings may be particularly relevant to the achievement of compromise. This divergence makes more sense when one considers that parents achieve their goals in both compromise and win-loss outcomes, whereas children’s goals are realized largely in compromises, as they very rarely emerge as the sole winners of conflict discussions. Thus for both parents and children, opposition appears to impede their achievement of their own goals in resolving differences.

In turn, both parents’ and children’s planning was particularly associated with fewer standoffs. Further, although fathers’ and mothers’ planning with their children was linked to resolving differences (especially via compromise), it appeared to be mothers’ planning that was selectively linked to compromise between spouses. Interestingly, relative to standoffs, husbands’ planning with their wives was positively related to win-loss, but not with compromise resolutions. This unanticipated finding for win-loss resolutions should be interpreted cautiously, due to the relatively low frequency of these outcomes among spouses. The literature also suggests that spouses may exercise power by withdrawing from spousal conflicts (e.g., Dunbar & Burgoon, 2005), an option that did not exist in our mandated discussions.

Other research on family conflict suggests that both planning and oppositional conflict strategies tend to be reciprocated in kind (Vuchinich, 1984), leading to either constructive or destructive pathways. For example, studies in both the sibling (Perlman & Ross, 2005) and spousal (Gottman, 1994) conflict literatures reveal that conflict negotiation trajectories depend on how these discussions begin. Consistent with our results, opposition has been shown to interfere with the achievement of resolutions, leading to negative affect which in turn precludes constructive problem-solving behavior (Forgatch, 1989). In contrast, future-oriented planning shifts the discussion away from past blame to dealing effectively with future recurrences of the issues and achieving goals (Stein & Albro, 2001; Vuchinich, 1999). It is important to note that the links between parents’ and children’s strategies and resolutions observed in our study were generally consistent across dyad types, suggesting relatively uniform patterns of association across family subsystems. In sum, our results corroborate past research on family conflict suggesting the constructiveness of future-oriented planning and the potential destructiveness of unmitigated opposition.

Limitations and Implications

In this study, we asked each dyad within the family to discuss an actual unresolved conflict. Although this procedure provides insight into conflict strategies for the issues that are meaningful to siblings, spouses, and parent–child dyads, it may also lead to heterogeneity between the topics of conflict nominated in each dyad type. It is known that conflict issues are related to the strategies used to resolve...
disputes (e.g., Papp, Cummings, & Goeke-Morey, 2009). Thus, our results may partly reflect variability associated with the different issues implicated in sibling, spousal, and parent–child conflicts. On the other hand, it is not reasonable to expect that the same issues are present across relationship types, and indeed it would be artificial to force that equivalence.

In this study, we only focused on two conflict strategies that have been theorized to reflect constructive and destructive conflict management as well as power dynamics. These strategies are not exhaustive, and within-family analyses of other conflict dimensions (e.g., emotionality, perspective-taking) may further contribute to our understanding of power dynamics in the family. In addition, we observed each dyad in the family resolving only one conflict. By observing each dyad on multiple occasions as they attempt to resolve different conflict issues, future studies could clarify how patterns in each dyad vary as a function of the characteristics of particular conflicts. Due to the relatively low number of standoffs (in parent–child dyads) and win-loss resolutions (in sibling and spousal dyads), investigating associations between strategies and resolutions could also benefit from a study including a larger number of discussions. That said, our findings are based on observations of 376 conflict discussions that do provide a substantial sample for this initial within-family investigation of conflict. Finally, our study revealed some intriguing and novel differences between fathers’ and mothers’ conflict behavior in the family. As such, a more focused investigation of parents’ conflict strategies and dyadic resolutions appears to be warranted, with particular emphasis on the mechanisms that may underlie the differences observed here. For instance, recent research on spouses reveals that power may differ between spouses, but contrary to earlier studies, that these asymmetries may not consistently favor husbands (Papp et al., 2009). As such, directly measuring perceptions of within- and between-family differences in spousal power may be a fruitful avenue for further study.

In this investigation, we attempted to capitalize on the strengths of both the family psychology and conflict negotiation literatures by simultaneously examining multiple sources of variability in family conflict strategies and resolutions. The adult conflict negotiation literature has developed sophisticated theories and methods to explain dyadic conflict strategies and resolutions during structured negotiation tasks, yet only recently has research in that field begun to consider relationship contexts as critical determinants of dyadic conflict strategies (Barry & Oliver, 1996). Our findings elucidate family conflict processes both between- and within-subsystems that may inform interventions aimed at promoting constructive conflict management in the family. For instance, across all family dyads, future-oriented planning strategies were linked to mutually agreed-upon conflict resolutions. At the same time, our results provide support for the notion that individual family subsystems vary in their conflict dynamics, consistent with predictions based on the sources of power that exist in the family. That is, power differences between parents and children in parent–child dyads were evident in the unequal resolutions achieved in this subsystem. In contrast, conflict resolutions in sibling and spousal dyads reflected more equal power between individuals. Within the family, parents exerted their authority by selecting constructive strategies to resolve issues with their children. Yet it was also clear that, within generations, individual siblings and spouses did not take on identical roles. Younger siblings were more oppositional, whereas older siblings engaged in more planning and appeared to have greater ability to influence conflict resolutions. Similarly, mothers’ planning was a more potent correlate of equitable spousal conflict resolutions than that of fathers. Thus, family conflict dynamics appear to be more nuanced than can be accounted for by basic comparisons of within- and between-generation dyads and both adults and children experience conflict differently within specific dyadic contexts. Further, our study suggests that tracking differences in the associations between conflict strategies and resolutions in different relationships may also add substantially to our understanding of how to promote constructive conflict resolution across family subsystems.

References

Received February 5, 2010
Revision received May 26, 2010
Accepted June 28, 2010